If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-40y-64=0
a = 6; b = -40; c = -64;
Δ = b2-4ac
Δ = -402-4·6·(-64)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-56}{2*6}=\frac{-16}{12} =-1+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+56}{2*6}=\frac{96}{12} =8 $
| 110=5(4-3x) | | (13x-993)+(3x-185)-(3x-129)=4 | | 4x-8=-4(11+2x | | 8x-1=2x-8 | | 3y+12/6=4y/3 | | 2x-5-2x+145=10x | | 4i-6=14 | | (x+3)-6/5=66 | | F(x)=x^2-12x+50 | | (4x-4)/2=(2x+3)/4 | | 2x+25x=180 | | 10x+25=100-20x | | 24=-4x-8+8 | | 150=-5(7+8x) | | 2a-14=-4(4-20a) | | 4(x-6)=6(x+8) | | -5(x+5)=10x+60 | | -1/4(-8j-8)=-14 | | -4(2x1)=-8x-2 | | 12-f/5=-8 | | G=2a-4 | | 2x-3x(2x-3)=45 | | 13x+9=37 | | 10(-5n-2)=-30+10n | | 8x+26=14x-26 | | a/3+15=18 | | X-7(x+4)=8 | | 40=160-20x | | 215=5(1+6n) | | 4r-8=-32 | | x+6*7=25 | | 2/3m-5/6=8/9 |